Магний (mg)

И чем же наш герой не металл?

Некоторые характеристики магния:

Свойство металла Данные
Атомная масса 24,304 г/моль
Степени окисления 0; +2
Плотность 1,74 г/см3
Температура плавления 650оС
Теплопроводность (300 K) 156 Вт/(м·К)
Температура кипения 1090 оС
Ковалентный радиус 136 пм
Радиус иона 66 (+2e) пм
Электроотрицательность 1,31 (шкала Полинга)
Электродный потенциал −2,37 В
Степени окисления 0; +2
Энергия ионизации
(первый электрон)
 737,3 (7,64) кДж/моль (эВ)

Химия магниевых реакций

Вспомним школьные годы. Немного химии во время карантина не повредит.

Итак, химические свойства нашего героя:

  • К щелочам огненный металл равнодушен (сами такие, к щелочноземельным металлам относимся). В реакции со щелочами не вступает.
  • Зато во взаимодействие с кислотами вступает охотно, даже бурно, с выделением водорода.
  • На воздухе магний реагирует с кислородом воздуха, покрывается оксидной пленкой. Эта «одежка» защищает металл от дальнейшего окисления. Но влажная атмосфера разрушает нашего «горячего» героя. Потому его и не хранят во влажных помещениях.

Как он горит!

Немного найдется металлов, горящих на воздухе, и наш герой — один из них. Подожгите магниевую стружку, и вспыхнет яркий, жгучий огонь. Еще бы не жгучий, его температура более 3000 градусов. Только не зажигайте магний на песке. Металл прореагирует с диоксидом кремния в песке, и будет гореть веселее. Потому затушить «магниевый» пожар песочком не получится.


Порошок магния

Горящий магний можно использовать как факел в темноте. Пара грамм магния — и даже в самую черную ночь все будет видно в радиусе 5-7 метров.

Не увлекайтесь зрелищем горящего металла. Такой яркий свет запросто повредит сетчатку глаза.

Подожгите металл в луже, и увидите мощную вспышку. Здесь образуется гидроксид магния (Mg(OH)2) и водород, который многократно усилит мощность огня.

Печально: в 1937 году дирижабль «Гинденбург», наполненный водородом, загорелся. Погибла треть пассажиров. Эта трагедия поставила крест на дирижаблях, как виде воздушного транспорта.

Кстати, головная боль пожарных — магний нельзя тушить водой. От этого огонь разгорится еще больше. Углекислотный огнетушитель тоже не вариант, ведь наш необыкновенный герой в присутствии углекислого газа хорошо горит, образуя уголь и оксид магния:

2Мg + CO2 = C + 2MgO

Магний металлический цена за килограмм

Не все пункты приема принимают магний. У тех, кто принимает существует лишь одна категория этого металла – кусковой лом магния (точнее это даже не магний в чистом виде, а сплавы, в которых он содержится, но в пунктах обозначается, как лом магния), его стоимость (средняя) составляет:

Лом магния кусковой – 38 рублей за килограмм.

В домашнем обиходе лом магния – это различные вешалки, дверные ручки. Лом магния можно встретить в виде старых блоков цилиндров от двигателей, карсасов авто сидений, панелей приборов, картеров сцепления и коробки передач, педалей, а также поддона картера двигателя, крышки головки блока цилиндров, впускного коллектора.

Так выглядит лом магния

Не стоит путать лом магния с ломом ЦАМа.

Широкий спектр применения этого элемента в металлургии, медицине, агропромышленном комплексе делает его интересным, в качестве вторичного сырья.

Однако увидеть объявления с желанием купить магний с ценой за кг лома, приходится довольно редко. Чаще востребованы сплавы и сернокислый порошок Mg. Но это не мешает бирже оценивать магний металл, цена которого зависит от выпуска чистого продукта. Периодически выпуск снижается, тогда таблоиды показывают возрастание стоимости продукта.

В пунктах приема лом магния и цена на него может зависеть от условий, на которых происходит факт купли/продажи – цена может варьироваться незначительно и от его объема.

Интерес к материалу подогревается его высокой огнеупорностью. Благодаря этому свойству Mg участвует в производстве футеровок и тиглей для металлургических печей. Видимо поэтому, объявления: куплю лом магния, не теряют актуальности – см. также лом огнеупоров.

Польза и вред добавок

Чистый магний ковкий, легкий металл. Только есть у металла свойство — подверженность коррозии. Потому чистый металл используют редко, в отличие от его сплавов. Для сплавов магния очень важны добавки алюминия, циркония, цинка.

Алюминий делает сплав прочнее и удобнее для литейных работ.

Количество лигатуры важно для качеств сплава:

  • 3% алюминия придадут наибольшую пластичность;
  • 6% лигатуры — даст лучшие прочность и пластичность;
  • 9% алюминия подарит сплаву максимальную прочность.

Свойства цинка в сплавах подобны алюминиевым:

  • 3% добавка максимально увеличивает пластичность;
  • 5% цинка даст гармоничное сочетание пластичности и прочности сплава;

Если в сплаве есть вредные примеси (никель, железо), то лигатура цинка повысит коррозионную стойкость.

Кремний повысит способность к литью, но в присутствии железа уменьшит устойчивость к ржавчине.

Никель и железо примеси вредные, они делают сплав подверженным ржавчине.

Сплавы магния делят на деформируемые (МА) и литейные (МЛ); последние применяются значительно чаще. В сплав МЦИ добавляют медь, железо, цинк, никель. Эта смесь металлов хороша при вибронагрузках.

Физические свойства

Магний — металл серебристо-белого цвета с гексагональной решёткой, обладает металлическим блеском; пространственная группа P 63/mmc, параметры решётки a = 0,32029 нм, c = 0,52000 нм, Z = 2. При обычных условиях поверхность магния покрыта довольно прочной защитной плёнкой оксида магния MgO, которая разрушается при нагреве на воздухе до примерно 600 °C, после чего металл сгорает с ослепительно белым пламенем с образованием оксида и нитрида магния Mg3N2. Скорость воспламенения магния намного выше скорости одёргивания руки, поэтому при поджоге магния человек не успевает одёрнуть руку и получает ожог. На горящий магний желательно смотреть только через темные очки или стекло, так как в противном случае есть риск получить световой ожог сетчатки и на время ослепнуть.Плотность магния при 20 °C — 1,738 г/см³, температура плавления 650 °C, температура кипения 1090 °C, теплопроводность при 20 °C — 156 Вт/(м·К).Магний высокой чистоты пластичен, хорошо прессуется, прокатывается и поддаётся обработке резанием.

Переизбыток и недостаток

Магний практически безвреден для организма, хотя некоторым его соединениям и присвоен II класс опасности. В основном же металл в разных видах приносит лишь пользу. А страдают люди, животные и растения чаще всего от недостатка или переизбытка вещества.

Когда металла в организме слишком мало, увеличивается риск развития сахарного диабета, болезней почек и кишечника. У людей, страдающих от недостатка микроэлемента, часто болит голова, начинается бессонница, появляются спазмы мышц, быстро наступает утомление. При отсутствии лечения это может привести к различным более серьёзным заболеваниям, повышается возможность заболеть раком.

Прежде чем приступать к восстановлению уровня вещества в организме, необходимо проконсультироваться с врачом и установить степень потребности в веществе. После сдачи анализов доктор назначит переменный или постоянный на протяжении какого-то времени приём соответствующих лекарственных препаратов, принимать которые следует строго по инструкции.

При переизбытке микроэлемента у людей появляются следующие болезни:

  • артрит;
  • нарушение речи;
  • тошнота;
  • сонливость;
  • и так далее.

Магний относится к жизненно необходимым микроэлементам. Сложно переоценить роль этого вещества в животных и растительных организмах. Его отсутствие в достаточном количестве способно возбудить множество заболеваний.

Характеристика магния

Твердое вещество Mg входит во вторую группу элементов периодической таблицы Менделеева, имеет атомный номер 12, по-латыни называется Magnesium.

С некоторых пор магний входит в группу щелочноземельных металлов. В чистом виде химический элемент магний обладает плотноупакованной гексагональной кристаллической структурой.

Строение атома объясняет, почему магний металл. Им свойственно иметь на внешнем уровне от 1 до 3 электронов, а конфигурация магния содержит пару свободных электронов.

Принадлежность к металлам подтверждают и некоторые характеристики вещества:

  • атомная масса составляет 24,304 г/моль;
  • температура кипения магния 1090;
  • температура плавления магния 650;
  • плотность 1,74 г/см3;
  • теплопроводность магния 300 К.

Состав магния включает три природных изотопа, валентность Mg 2. В обычных условиях агрегатное состояние магния — обычное твердое тело. Магний относится к категории активных с химической точки зрения элементов, поскольку быстро поддается окислению. Образовавшаяся на поверхности окись в виде пленки MgO не отличается защитными качествами. С ростом температуры реакция образования пленки ускоряется. Степень окисления колеблется от 0 до +2.

Физические свойства

Магний — очень легкий, довольно хрупкий металл, постепенно окисляется на воздухе, превращаясь в белый оксид магния. Кристаллическая решетка α-формы Ca (устойчивой при обычной температуре) гранецентрированная кубическая, а = 5,56Å. Атомный радиус 1,97Å, ионный радиус Ca2+, 1,04Å. Плотность 1,74 г/см³(20 °C). Выше 464 °C устойчива гексагональная β-форма. tпл = 650 °C, tкип = 1105 °C; температурный коэффициент линейного расширения 22•10-6 (0-300 °C); теплопроводность при 20 °C 125,6 Вт/(м•К) или 0,3 кал/(см•сек•°C); удельная теплоемкость (0-100 °C) 623,9 дж/(кг•К) или 0,149 кал/(г•°C); удельное электросопротивление при 20 °C 4,6•10-8 ом•м или 4,6•10-6ом•см; температурный коэффициент электросопротивления 4,57•10-3 (20 °C). Модуль упругости 26 Гн/м² (2600 кгс/мм²); предел прочности при растяжении 60 Мн/м² (6 кгс/мм²); предел упругости 4 Мн/м² (0,4 кгс/мм²), предел текучести 38 Мн/м² (3,8 кгс/мм²); относительное удлинение 50 %; твердость по Бринеллю 200—300 Мн/м² (20-30 кгс/мм²). Магний достаточно высокой чистоты пластичен, хорошо прессуется, прокатывается и поддается обработке резанием.

История открытия

Новая эра развития химии началась в XVII веке. В этот период химик из Англии по фамилии Гро совершил открытие, приблизившее учёных к выделению магния. В 1695 г. во время выпаривания эпсомской минеральной воды он получил горькую соль, обладавшую свойством слабительного.

Через несколько лет исследования показали, что взаимодействие вещества с содой и карбонатом калия даёт белый рыхлый порошок. Этот же результат был получен во время прокаливания минерала, который был найден рядом с городом Магнезия в Греции. Из-за этого сходства соль стали назвать белой магнезией.

Непосредственно магний впервые был получен Хэмфри Дэви в 1808 г. Учёный проводил электролиз белой магнезии, в которую он добавил небольшое количество воды и ртутной окиси. Эта реакция привела к образованию амальгамы металлического вещества. Полученный металл после выведения получил название «магний».

Почему магний особенно нужен женщинам

С острой нехваткой магния часто сталкиваются женщины. Связано это с тем, что он отвечает за нормализацию менструального цикла, формирования либидо и правильное развитие плода во время беременности. Если минерала не хватает в организме, то появляется отечность, гормональные сбои. Недостаток отрицательно сказывается на состоянии кожного покрова.

Но самое главное, для чего нужен магний – правильное развитие ребенка в утробе матери. Также он нужен и в юном возрасте, так как принимает непосредственное участие в формировании гормональной системы и отвечает за правильное половое развитие. Не меньшая роль у него во время климактерического периода.

Об этом особенно следует помнить женщинам, принимающим оральные контрацептивы, которые снижают количество магния в организме на 40%. Дефицит минерала проявляется уже на 3 месяц с начала приема таблеток. Кстати, женщины могут определить нехватку этого элемента по усиленной тяге к шоколаду в предменструальный период.

Как играть из MG3 в PUBG Mobile?

Новый ручной пулемёт MG3 не поддерживает установку модификаций, как рукоятки, глушители или приклады. Однако это никак влияет на его эффективность в бою. Для улучшения точности стрельбы можно устанавливать прицелы. Пулемёт поддерживает голографический прицел, красную точку и других прицелы начиная от двукратного и заканчивая шестикратным прицелом.

MG3 оснащен вмонтированными сошками, которые можно использовать в положении лёжа. Ниже вы найдёте список советов, которые помогут вам эффективно использовать MG3:

  • Спрячьтесь за деревом или камнем. Присядьте и устраните врага, что движется в вашу сторону. Так вы будете в безопасности, даже если враг едет на транспорте.
  • Примите положение лёжа для боя на дальних дистанциях. Для укрытия можно использовать высокую траву, которая спрячет модель вашего тела. Стрельба из положения лёжа позволяет вести огонь практически без отдачи.
  • Используйте стрельбу зажимом для боя на ближних дистанциях.
  • Если вражеская команда передвигается на машине, переключитесь в режим стрельбы 990 выстрелов в минуту. Так вы сможете устранить целую команду взрывом их транспорта.
  • Перезаряжайтесь, когда есть возможность. Это позволит сохранить драгоценное время во время активной фазы боя. Не забывайте использовать укрытие. При необходимости бросайте дымовые гранаты, чтобы обезопасить себя во время перезарядки.

Особенности взаимодействия между пользователями

Сегодня существует большое количество игровых проектов, основанных или имеющих функцию многопользовательского режима. И во многих таких проектах можно общаться по микрофону, причем общение может происходить между членами команды или между всеми пользователями игры, если речь идет о ролевом проекте.

Однако в GTA все это не используется, а вместо привычных сегодня микрофонов и голосовых чатов в GTA SAMP предусмотрено общение с помощью игрового чата. В нем игроки могут переговариваться друг с другом и осуществлять многочисленные внутриигровые действия. И каждое из таких действий, начиная от выбора работы и заканчивая покупкой одежды в ближайшем магазине – это определенные команды, которые пользователь должен вводить в определенный момент.

Однако в случае с RP существует очень важный момент, на который следует обратить внимание – на любом SAMP сервере, на котором реализована возможность общаться и исполнять свою роль, существует достаточно жесткое разграничение notRP и RP сообщений. В том случае, если пользователь пишет что-либо от лица собственного персонажа, ему можно уже не заботиться о добавлении дополнительных букв или символов, ведь игровой чат – это место, в котором происходит коммуникация между ролевыми персонажами

И любое сообщение, в котором нет дополнительных символов или аббревиатур, является RP-сообщением

В том случае, если пользователь пишет что-либо от лица собственного персонажа, ему можно уже не заботиться о добавлении дополнительных букв или символов, ведь игровой чат – это место, в котором происходит коммуникация между ролевыми персонажами. И любое сообщение, в котором нет дополнительных символов или аббревиатур, является RP-сообщением.

Но что же тогда notRP-сообщения? Это все то, что игрок хочет сказать именно как человек, а не как игровой персонаж. В таком случае необходимо заключать послание от человека в двойные скобки, то есть сделать его таким: ((текст)).

Получение чистого металла

Промышленное получение металла возможно двумя способами:

  1. Электролитическим.
  2. Термическим.

В первом способе необходимы обезвоженные хлориды магния, натрия, калия. Их смешивают в электролитической ванне, в расплаве происходит восстановления магния.

Чистый металл сливают, добавляя в ванну сырье. В черновом металле содержится до 2% примесей. При необходимости еще не остывший магний рафинируют, доводя чистоту почти до идеальной — 99,999%.

Во втором способе в качестве сырья предпочтительно использовать доломит с добавлением кокса. Возможно использование морской воды. Смесь разогревают до 2100 градусов, пары магния отгоняются и конденсируются.

Способы получения магния

Электролиз расплавленного хлорида

Способ электролиза расплавленного хлорида MgCl2 или расплава MgCl2 и KCl стал теперь основным в мировой практике. Для этого применяется ванна из огнеупорного кирпича в стальном кожухе. В середине ванны установлен графитовый анод, а по бокам – два стальных катода. Хлористый магний плавится при 718 ºС, расплав его состоит из ионов Mg2+ и Cl– .

Ионы разряжаются на катоде:

Mg2+ + 2e → Mg.

Магний выделяется в жидком виде (температура плавления 651 ºС) и всплывает в электролите, собираясь на его поверхности; плотность жидкого магния около 1,47 кг/м3, а плотность жидкого MgCl2 1,68 кг/м3.

На аноде выделяется хлор:

2Cl– – 2e → Cl2;

пузырьки его также всплывают в электролите. Магний и хлор не должны встречаться: это привело бы к сгоранию магния в хлоре:

Mg + Cl2 → MgCl2.

Для разделения продуктов электролиза в ванне устанавливают керамические перегородки – диафрагмы. Чтобы предупредить потери хлора и окисление магния кислородом воздуха, ванну закрывают керамической крышкой.

Присутствие в расплаве хлоридов щелочных металлов – калия и натрия – не изменяет ход электролиза: напряжение разложения этих солей выше, поэтому калий и натрий не выделяются на катоде вместе с магнием. Присутствие в расплаве даже небольших количеств воды вредит электролизу, так как хлористый магний при этом гидролизуется:

MgCl2 + H2O → MgO + 2HCl.

Окись магния выпадает в осадок и образует на дне ванны нежелательный для процесса шлам. Подобное действие оказывают примеси сульфата на восстановленный магний:

Mg + MgSO4 → 2MgO + SO2.

Примеси железа восстанавливаются легче магния и загрязняют его. Поэтому для производства магния электролизом нужен безводный его хлорид, не содержащий остаточной воды, сульфата и железа. Безводный хлористый магний можно получить обезвоживанием природных солей – бишофита MgCl2 · 6H2O и карналлита либо хлорированием магнезита.

Соли обезвоживают сушкой и переплавкой. Для хлорирования природный MgCО3 обжигают при температуре около 700–800 ºС, превращая его в каустический магнезит по реакции

MgCО3 → MgO + CO2.

Каустический магнезит смешивают с углем, брикетируют и обрабатывают хлором. Безводный хлористый магний получается в результате реакции

MgO + Cl2 + C →MgCl2 + CO.

Получение хлористого магния из магнезита бывает выгоднее обезвоживания солей, если для этого можно использовать хлор, получаемый при электролизе карналлита.

Поэтому для производства магния электролизом расплавленного хлорида требуется предварительное получение из природного сырья достаточно чистого безводного хлористого магния.

Термические способы получения магния

Углетермический способ основан на реакции

MgO + C Mg + CO.

Окись магния смешивают с мелким нефтяным коксом и брикетируют. Брикеты нагревают в среде водорода, предупреждающего доступ воздуха, в электрической печи при температуре около 2500 ºС. Магний получается в виде паров, смешанных с окисью углерода.

Выходящую из печи газовую смесь быстро охлаждают до 120 ºС, смешивая с большим количеством водорода или природного газа. Резкое охлаждение необходимо для «закаливания» газов, предупреждающего обратную реакцию – окисление паров магния окисью углерода. Магний конденсируется в тонкую пыль; ее улавливают из газов пылеуловителями и подвергают дистилляции в вакууме, получая твердый металл.

Для углетермического способа требуется сложная дорогая аппаратура, и он взрывоопасен: мелкая пыль магния склонна к самовозгоранию. Поэтому в современной практике этот способ применяется редко.

Силикотермический способ требует меньших температур и более простого оборудования. По этому способу окись магния восстанавливают в вакууме ферросилицием – сплавом железа и кремния.

В герметичных стальных ретортах, обогреваемых электричеством или газом до 1160–1170 ºС, нагревают брикеты из тщательно перемешанных порошков каустического доломита и ферросилиция. Каустический доломит – смесь окислов CaO и MgO для силикотермического способа удобнее, чем чистая окись магния: входящая в доломит окись кальция способствует восстановлению.

Каустический доломит получают обжигом природного доломита при 1000–1100 ºС в трубчатых вращающихся печах.

В реторте протекает реакция

2MgO + 2CaO + Si(Fe) → Ca2SiO4 + 2Mg + Fe.

Магний удаляется в виде паров, а в реторте остаются полурасплавленный остаток силиката кальция и железо. Пары магния, охлаждаясь в конденсаторе, дают кристаллический осадок металла.

Этот способ сложен и дорог из-за большого расхода реторт. Реторты даже из дорогой хромоникелевой стали недолговечны. Силикотермический способ применяют в том случае, если отсутствуют месторождения хлоридов магния.

МГБ GT V8

МГБ GT V8
МГБ GT V8
Обзор
Производство 1973–1976
Кузов и шасси
Тип кузова 2-дверное купе
Трансмиссия
Двигатель 3,5 л V8

MG начала предлагать MGB GT V8 в 1973 году с алюминиевым блоком двигателя Rover V8 объемом 3528 куб. См , который впервые был установлен на Rover P5B . Этот двигатель использовался в цельном кузове GM 1961–1963 годов Buick Special / Skylark и Oldsmobile F-85 и Pontiac Tempest 1961–1962 годов и был самым легким серийным V8 в мире. Версия Buick имела сухой, раздетый вес 318 фунтов (144 кг), а Skylark 1963 года с дополнительным четырехцилиндровым карбюратором Rochester и степенью сжатия 10: 1 выдавал 200 л.с. (150 кВт) при 5000 об / мин. К тому времени, когда Rover произвел модификации ремней для усиления блока, двигатель был значительно тяжелее (более 170 кг). Некоторые изменения были внесены MG-Rover, и двигатель занял прочную нишу в британской автомобильной промышленности. Эти автомобили были похожи на те, которые уже производились в значительных объемах тюнером Кеном Костелло . MG даже заключила контракт с Костелло на создание прототипа MGB GT V8. Тем не менее, мощный двигатель 180 л.с. (134 кВт), используемый Костелло для его переоборудования, был заменен для производства MG на более скромную версию, производящую всего 137 л.с. (102 кВт) при 5000 об / мин. Тем не менее, 193 фунт-фут (262 Нм) крутящего момента помог ему разогнаться до 60 миль в час (97 км / ч) за 7,7 секунды и разогнаться до максимальной скорости 125 миль в час (201 км / ч). Расход топлива был чуть меньше 20 миль на галлон.

Благодаря алюминиевому блоку цилиндров и головкам двигатель Rover V8 весил примерно на 40 фунтов меньше, чем железный четырехцилиндровый двигатель MG . В отличие от MGC, V8, который обеспечивал увеличенную мощность и крутящий момент MGB GT V8, не требовал значительных изменений шасси и не жертвовал управляемостью.

И хромированные, и резиновые версии GT MGB с двигателем V8 были произведены на заводе, производство которого закончилось в 1976 году. MG никогда не пыталась экспортировать MGB GT V8 в Соединенные Штаты. Он решил не разрабатывать версию MGB GT V8 с левым рулем, хотя двигатель Rover V8 предлагался в моделях Rover, предназначенных для США. P6 3500 был снят после 1971 года из США, а Rover 3500 SD1 был представлен только в 1980 году (его двигатель был оснащен энергосберегающим оборудованием для снижения выбросов), так что в течение всего срока службы MGB GT V8 двигатель не производился в федеральной версии. . Абингдон построил семь моделей с левым рулем, отправил их в Америку для прохождения сертификации и вернул их в Великобританию для продажи в страны континентальной Европы.

История открытия

Магний (Mg) учеными был открыт в результате случайных опытов в 1695 году. Ученые-химики выделили из целебных вод Эпсомского природного источника, который находится в Великобритании, горькую соль. Полученная соль оказывала на человеческий организм воздействие легкого слабительного средства, и долго назначалась в соответствующих целях. Это вещество изначально получило наименование «магнезия».

В 1798 году малоизвестный химик Антон фон Рупрехт сумел выделить из «горькой соли» методом восстановления углем новый элемент, обозначив его как «австрий». Через некоторое время удалось выяснить что «австрий» фактически представляет собой магний с обилием железистых примесей.

Следующая цепочка открытий магния последовала в начале 19 века. В 1808 г. британский химик Гемфри Дэви методом электролиза влажной смеси магнезии и оксида ртути получил агрегацию нового металла, назвав его «магнезиум». Примечательно, что это название до нашего времени принято в некоторых странах.

В 1829 г. химик из Франции А. Бюсси выделил магний путем восстановления расплавленного хлорида металлическим калием. В 1830 г. М. Фарадей сумел добыть магний методом электролиза нагретого до температуры плавления хлорида магния.

Взаимодействие с различными кислотами

Для краткости, проще рассмотреть несколько экспериментов. Для них берутся такие виды кислот:

  1. Соляная.
  2. Азотная.
  3. Серная (разбавленная и нет).

В первом случае наблюдается практически мгновенное растворение, сопровождающееся пузырьками белых газов и резким запахом хлора. Емкость, в которой происходила реакция нагревается.

В азотной кислоте кусочек магния не тонет. Бурый газ скапливается над поверхностью жидкости, выделяется тепло. Иногда говорят, что кислота «кипела», окружая кусочки магния.

Третий случай необходимо рассматривать, как два частных. В неразбавленной серной кислоте реакция идет медленно. Если же использовать раствор с небольшим количеством воды, магний также, как с азотной кислотой плавает на поверхности. При этом происходит едва заметная реакция с выделением белых пузырьков газа.

Почему режим RP в SAMP стал популярным

Самый приятный и полюбившийся геймерам режим игры в SAMP – это RP, или Role Play (отыгрывание ролей). Особенность этого режима в том, что он отлично вписался и был хорошо проработан в GTA San Andreas – игре, которая не основана на ролевой составляющей. Еще одна причина популярности режима RP заключается в том, что на момент выхода GTA San Andreas и дополнения в виде San Andreas MultiPlayer многие разработчики игр создавали в основном шутеры. То есть их выходило очень много, поэтому многие геймеры скучали по какой-нибудь RPG составляющей. Собственно, именно по этой причине многие пользователи выбирали режима RP и проводили за игрой несколько часов.

Если с режимом все понятно и всем знакомы RPG игры, то в чем суть механики RP серверов, на которых нужно отыгрывать роли?

Как оказалось, режим Role Play – это некоторые игровые условия в GTA SA. То есть игровой мир великого автоугонщика будет точно таким же, как в оригинальной версии, но в режиме Role Play сервером и разработчиками создаются некоторые законы, ограничения и рамки, а также еще едва ли не несколько сотен других важных деталей, отвечающих за функционирование игрового сервера.

В режиме RP человек, появляясь на сервере в первый раз, получает себе персонажа, удостоверение, а после этого устраивается на работу и начинает отыгрывать выбранную роль.

При этом персонаж под командованием пользователя может просто работать и жить на зарплату, может стремиться подняться вверх по карьере, создать бизнес и так далее. И на этом выбор не ограничивается – можно стать полицейским, встать на путь противозаконника или просто уйти в отшельники. То есть жизнь на любом сервере, если он достаточно популярен, продолжается и кипит даже сегодня, несмотря на то, что с момента выхода GTA SA прошло уже много лет.

Сила: что это за величина

В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или тормозит, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причиной любого действия или взаимодействия является сила.

Сила — это физическая векторная величина, которую воздействует на данное тело со стороны других тел.

Она измеряется в Ньютонах — это единица измерения названа в честь Исаака Ньютона.

Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.

Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.

Химические свойства оксида магния. Химические реакции оксида магния:

Оксид магния относится к основным оксидам.

Химические свойства оксида магния аналогичны свойствам основных оксидов других металлов. Поэтому для него характерны следующие химические реакции:

1. реакция оксида магния с водородом:

MgО + H2 → Mg + H2О.

В результате реакции образуется магний и вода.

2. реакция оксида магния с углеродом:

MgО + С → Mg + СО (t  = 2000 oC).

В результате реакции образуется магний и оксид углерода.

3. реакция оксида магния с серой:

2MgО + 3S → 2MgS + SО2.

В результате реакции образуется сульфид магния и оксид серы.

4. реакция оксида магния с азотом:

2MgО + N2 → 2Mg + 2NО.

В результате реакции образуется магний и оксид азота.

5. реакция оксида магния с кремнием:

2MgО + Si → 2Mg + SiО2.

В результате реакции образуется магний и оксид кремния.

6. реакция оксида магния с калием:

MgО + 2K → Mg + K2О.

В результате реакции образуется магний и оксид калия.

7. реакция оксида магния с кальцием:

MgО + Са → Mg + СаО (t  = 1300 oC).

В результате реакции образуется магний и оксид кальция.

8. реакция оксида магния с алюминием:

3MgО + 2Al → 3Mg + Al2О3.

В результате реакции образуется магний и оксид алюминия.

9. реакция оксида магния с хлором и углеродом:

MgO + Cl2 + С → MgCl2 + СО (t  = 800-1000 oC).

В результате реакции образуется хлорид магния и оксид углерода.

10. реакция оксида магния с водой:

MgО + Н2О → Mg(ОН)2 (t  = 100-125 oC).

Оксид магния реагирует с водой, образуя гидроксид магния.

11. реакция оксида магния с оксидом углерода (углекислым газом):

MgО + СО2 → MgСО3.

Оксид магния реагирует с углекислым газом (являющийся кислотным оксидом), образуя соль – карбонат магния.

12. реакция оксида магния с оксидом серы: 

MgО + SО2 → MgSО3;

MgО + SО3 → MgSО4.

Оксид серы также является кислотным оксидом. В результате реакции образуется соответственно соль – в первом случае – сульфит магния, во втором случае – сульфат магния.

13. реакция оксида магния с оксидом кремния:

MgО + SiО2 → MgSiО3 (t = 1100-1200 oC).

Оксид кремния также является кислотным оксидом. В результате реакции образуется соль – силикат магния.

14. реакция оксида магния с оксидом фосфора:

3MgO + P2O5 → Mg3(PO4)2;

3MgO + P2O3 → Mg3(PO3)2;

Оксид фосфора также является кислотным оксидом. В результате реакции образуется соль соответственно: ортофосфат магния и фосфит магния.

15. реакция оксида магния с оксидом алюминия:

MgО + Al2O3 → MgAl2О4 (t = 1600 °C).

Оксид алюминия является амфотерным оксидом. Это значит, что как амфотерный оксид оксид алюминия проявляет свойства как кислотных, так и основных соединений. В результате реакции образуется соль – алюминат магния (шпинель).

16. реакция оксида магния с оксидом железа:

MgО + Fe2O3 → MgFe2О4 (to).

В результате реакции образуется соль – феррит магния. Реакция протекает при прокаливании реакционной смеси.

17. реакция оксида магния с оксидом азота

MgО + 2N2О5 → Mg(NO3)2.

В результате реакции образуются соль – нитрат магния.

18. реакция оксида магния с плавиковой кислотой:

MgO + 2HF → MgF2 + H2O.

В результате химической реакции получается соль – фторид магния и вода.

19. реакция оксида магния с азотной кислотой:

MgO + 2HNO3 → 2Mg(NO3)2 + H2O.

В результате химической реакции получается соль – нитрат магния и вода.

Аналогично проходят реакции оксида магния и с другими кислотами.  

20. реакция оксида магния с бромистым водородом (бромоводородом):

MgO + 2HBr → MgBr2 + H2O.

В результате химической реакции получается соль – бромид магния и вода.

21. реакция оксида магния с йодоводородом:

MgO + 2HI → MgI2 + H2O.

В результате химической реакции получается соль – йодид магния и вода.

22. реакция оксида магния с оксидом кальция и кремнием:

2MgO + CaO + Si → CaSiO3 + 2Mg.

В результате химической реакции получается соль – силикат кальция и магний.

23. реакция оксида магния с хлоридом натрия:

MgO + 2NaCl → MgCl2 + Na2O.

В результате химической реакции получается соль – хлорид магния и оксид натрия.

24. реакция оксида магния с хлоридом железа:

3MgO + 2FeCl3 → 3MgCl2 + Fe2O3.

В результате химической реакции получается соль – хлорид магния и оксид железа.

25. реакция оксида магния с гидроксидом калия:

MgO + 2KOH → Mg(OH)2 + K2O.

В результате химической реакции получается гидроксид магния и оксид калия.